<<234567>>
21.

Let X  and Y be two arbitrary , 3x3  , non zero, skew-symmetric  matrices and Z be an arbitary , 3 x3 , non -zero , symmetric matrix. Then , which of the following matrices is/are skew-symmetric?


A) $Y^{3}Z^{4}-Z^{4}Y^{3}$

B) $X^{44}+Y^{44}$

C) $X^{4}Z^{3}-Z^{3}X^{4}$

D) $X^{23}+Y^{23}$



22.

Let $\triangle PQR$  be a triangle . Let  a=QR, b= RP and  c= PQ . If  |a|=12, |b|= $4\sqrt{3}$ and  b.c=24, then which of the following is/are true?


A) $\frac{|c|^{2}}{2}-|a|=12$

B) $\frac{|c|^{2}}{2}+|a|=30$

C) |a x b+c x a|= $ 48\sqrt{3}$

D) a.b= - 72



23.

Let   $ f(x)= \sin\left[ \frac{\pi}{6}\sin(\frac{\pi}{2}\sin x)\right]$  for all x ε  R and   $g(x)= (\pi/2)\sin x4$ for all x ε  R . Let (fog)(x)  denotes f(g(x)) and (gof)(x) denotes g{f(x)} . Then, which of the following is /are true?


A) Range of f is $\left[-\frac{1}{2},\frac{1}{2}\right]$

B) Range of fog is $\left[-\frac{1}{2},\frac{1}{2}\right]$

C) $\lim_{x \rightarrow 0}\frac{f(x)}{g(x)}=\frac{\pi}{6}$

D) There is an an x e R such that (gof)(x)=1



24.

 Let  $g:R\rightarrow R$  be a differentiable  function with g(0)=0, g'(0)=0 and g'(1)≠ 0,$f(x)= \begin{cases}\frac{x}{|x|}g(x) & x \neq 0\\0 & x = 0\end{cases}$  and $h(x)=e^{|x|}$   For all x ε R. Let (foh)(x) denotes  f{h(x)}  and (hof)(x) denotes h{f(x)} . Then which of the following is/are true?


A) f is differentiable at x=0

B) h is differentiable at x=0

C) foh is differentiable at x=0

D) hof is differentiable at x=0



25.

 Consider the family of all circles whose centres lie on the straight line y=x, If this family of circles is represented by the differential equation   $Py"+Qy'+1=0$ , where P,Q are the functions of x, y and y'   (here,    $y'=\frac{dy}{dx},y''=\frac{d^{2}y}{dx^{2}})$, then which of the following statement (s) is /are true?


A) P=y+x

B) P=y-x

C) $P+Q=1-x+y+y'+(y')^{2}$

D) $P-Q=x+y-y'-(y')^{2}$



<<234567>>